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1. Introduction

High specific strength and specific modulus makes the polymer-matrix composites a promising
candidate for high performance structures. The low value of shear modulus of composites as
compared to conventional materials becomes a major issue in the analysis of the structures made
out of such materials. This results in high transverse shear deformation and it is to be taken care
at formulation level itself. The classical laminated beam theory does not model transverse shear
deformation and is only appropriate for beams of high aspect ratio where it is not prominent.

Lo et al. [1,2] proposed a higher order displacement model consisting of third order polynomial
in thickness direction for analysis of composite plates. This displacement model has been widely
used with modifications to satisfy transverse shear stress boundary condition at the top and
bottom of the plate [3,4]. In such models the displacement and its slope with respect to the
thickness direction is continuous. This property of the displacement field leads to discontinuous
transverse shear stress, and is also not able to model zig-zag nature of the displacement field in
thick laminated composite structures. These are also known as equivalent single layer (ESL)
theories.

In the layerwise displacement models, the displacement fields are layer dependent and are able
to maintain in-plane displacement and shear stress continuity at the interface. The number of
variables in many of these models are independent of number of layers [5,6]. In this note, a
displacement model is presented in which the number of variables are independent of layers. The
displacement field consists of a trigonometric sine term to represent the non-linear variation
across the thickness in addition to classical beam theory terms. In conventional theories, a cubic
term is used to represent this. The sine term in in-plane displacement leads to a cosine variation in
transverse shear stress as compared to parabolic variation in conventional theories. A simplified
ESL model of a similar class is also presented and results are compared. Stein [7] has used a
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similar plate theory for the post-buckling analysis of plate, his theory does not satisfy the
transverse shear stress condition at top and bottom of the plate. The efficacy of the present
displacement model in case of static analysis is presented in Ref. [8].

2. Displacement field

A composite laminate of N lamina is shown in Fig. 1. x-axis is at the center of laminate and the
z-axis is perpendicular to it. The displacement field at any point ðx; zÞ inside the laminate is given
below
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where, uk is in-plane displacement in kth layer, w0 is transverse displacement in z direction, Zx is
higher order term, h is the total thickness of the laminated beam and
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Fig. 1. Laminate geometry.
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It may be noted that the displacement field is dependent on only three variables u0;w0 and Zx: The
displacement field is different in different layers and is governed by the coefficient Ak and Bk;
which are dependent on layer material and geometry. Ak and Bk are zero for N ¼ 1 (single layer).
Here Gn�1

xz is transverse shear modulus and superscript is layer number.
The in-plane and transverse shear strains are

ek
x ¼

@u0

@x
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The governing equations associated with the above displacement functions can be derived using
the virtual work principle. These variationally consistent equations are as follows:

du0:
@Nx
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where q is the distributed transverse load, and the resultant forces and moments are defined as
follows:
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The resultant inertia terms are
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The essential and natural boundary conditions obtained are listed below:

Natural boundary conditions Essential boundary conditions

Nx u0

Mx @w0=@x

@Mx=@x w0

ðNSx þ MBx þ NAxÞ Zx

ð12Þ

3. Numerical example and results

The efficacy of the present zig-zag displacement model further referred as TSDT-ZZ, is shown
by comparing the results with the examples available in literature. The results are compared with a
higher order mixed theory [9].

The boundary conditions of the chosen beam at two ends are: Nx ¼ 0; Mx ¼ 0; w0 ¼ 0 and
NSx þ MBx þ NAx ¼ 0: Problem considered here is a four layer beam. The material properties of
the layers used is DATA-3 and DATA-5 from Ref. [9]:

E1 ¼ 1:448E8 kN=mm2; E2 ¼ 9:65E6 kN=mm2; G12 ¼ 4:14E6 kN=mm2;
n12 ¼ 0:3; r ¼ 1389:23 N s2=m4;
Length l ¼ 1:5E4 mm; Thickness h ¼ 1:0E3 mm and 3:0E3 mm;
Lamination scheme ½0=90=90=0� all layers of equal thickness.

The following displacement function satisfies the simply supported boundary conditions
mentioned earlier:

u0 ¼
XN
i¼1

Ui cos axeiot;

w0 ¼
XN
i¼1

Wi sin axeiot;

Zx ¼
XN
i¼1

Zxi cos axeiot: ð13Þ

In above equations a ¼ ip=l; where l is length of the beam and o is natural frequency.
The results are also compared with a ESL theory of similar class and it is further referred as

TSDT-ESL, the displacement field is

u ¼ u0 � z
@w0

@x
þ sin

pz

h
Zx; ð14Þ

w ¼ w0: ð15Þ

It may be noted that in the above displacement function the derivative with respect to thickness is
continuous. This leads to discontinuous shear stress at interface in layered composites.

It can be noted that TSDT-ZZ requires one additional variable as compared to TSDT-ESL, i.e.,
u0: For symmetric laminates this term is zero in the case of TSDT-ESL and it can be further
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simplified to

u ¼ �z
@w0
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þ sin
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h
Zx; ð16Þ
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p
h
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h
Zx: ð18Þ

In above equation it can be noted that single cosine term is able to give zero shear strain at top
and bottom of the beam, whereas in polynomial type displacement model at least one more term
will be required to satisfy this condition. This feature of TSDT makes it elegant and results in
lesser number of stress resultants in governing equations.

Numerical results are presented in Table 1 and compared with another mixed theory [9]. It can
be noted that the results are matching very well. Using TSDT-ZZ transverse shear stress can be
calculated using constitutive relation and it offers advantage over TSDT-ESL where one has to
use equilibrium equation approach.

All the calculated frequencies are non-dimensionalised as given below:

%o ¼ ol2
r

E1h2

� �1=2
:

4. Concluding remarks

In this note, a new type of zig-zag displacement function is presented. The displacement
function uses trigonometric terms to represent the displacement across the thickness. The
displacement function satisfies displacement and transverse shear stress continuity at the interface.
Zero shear stress condition at top and bottom of the beam is also satisfied. The new displacement
function is used for free vibration analysis of a thick simply supported layered beam and results
are compared with another mixed theory. Results are also presented for a similar class of
equivalent single layer beam theory.
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Table 1

Comparison of natural frequency %o of composite beams for the first four modes

l=h Theory 1 2 3 4

5 TSDT-ZZ 1.785 4.444 7.181 10.084

TSDT-ESL 1.783 4.444 7.201 10.147

Ref. [9] 1.814 4.530 7.234 9.931

15 TSDT-ZZ 2.505 8.569 16.0636 23.962

TSDT-ESL 2.505 8.562 16.048 23.941

Ref. [9] 2.513 8.660 16.330 24.436
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